小学数学知识总结归纳
同学们,学习小学数学知识也有一段时间了,不妨做好知识总结归纳,以便以后更好地复习?以下是小学数学知识总结归纳内容,下面一起去看看吧!
1小学数学知识总结归纳之整数概念
自然数我们在数物体的时候,用来表示物体个数的1,2,3,4,5,...叫做自然数。一个物体也没有,用“0”表示,“0”也是自然数,它是最小的自然数,没有最大的自然数,自然数是无限的。
整数在小学阶段,整数通常指自然数。
数字表示数目的符号叫做数字,通常把数字叫做数码。
加法把两个数合并成一个数的运算,叫做加法。
加数在加法中相加的两个数,叫做加数。
和在加法中两个加数相加得到的数叫做和。
减法已知两个数的和与其中一个数,求另一个加数的运算,叫做减法。
被减数在减法中,已知的和叫做被减数。
减数在减法中,减去的已知加数叫做减数。
差在减法中,求出的未知加数叫做差。
乘法求几个相同加数的和的简便运算,叫做乘法。
因数在乘法中,相乘的两个数都叫做积的因数。
积在乘法中,乘得的结果叫做积。
除法已知两个因数的积,与其中一个因数,求另一个因数的运算,叫做除法。
被除数在除法中已知的积叫做被除数。
除数在除法中,已知的一个因数叫做除数。
商在除法中,未知的因数叫做商。
计数单位一,十,百,千,万,十万,百万,千万,亿......都叫做计数单位。
十进制计数法每相邻的两个计数单位间的进率是十。这种计数方法叫做十进制计数法。
数位写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。一个数字所在的数位不同,表示的数的大小也不同。第一个数位称为个位,依次是十位,百位,千位,万位,十万位......
有余数除法一个整数除以另一个不为零的整数,得到整数的商以后还有余数,这样的除法叫做有余数的除法。余数比除数小。
整数四则混合运算我们学过的加减乘除四种运算,统称为四则运算。
第一级运算在四则运算中,加法和减法叫做第一级运算。
第二级运算在四则运算中,乘法和除法叫做第二级运算。
整除两个整数相除,如果用字母表示可以这样说:整数a除以整数b(b不等于0)除得的商正好是整数而没有余数,我们就说a能被b整除,也可以说b能整除a。
约数和倍数如果数a能被b(b不等于0)整除,a叫做b的倍数,b叫做a的约数或a的因数。倍数和约数是相互依存的。一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。一个数的倍数的个数是无限的,其中最小的倍数是它本身。例如,15能被3整除,我们就说15是3的倍数,3是15的约数。
偶数能被2整除的数叫做偶数,因为0也能被2整除,所以0也是偶数。
奇数不能被2整除的数叫做奇数。例如 1、3、5、7......
质数一个数,如果只有1和它本身两个约数,这样的数叫做质数或者素数。例如2、3、5、7、11都是质数。
素数素数就是质数。
合数一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。例如4、6、8、9、10、12......都是合数。
质因数每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
分解质因数把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如:12=3*2*2
公约数几个数公有的约数,叫做这几个数的公约数。
最大公约数在几个数的公约数中最大的一个,叫做这几个数的最大公约数。例如1,2,4是8和12的公约数;4是8和12的最大公约数。
互质数公约数只有1的两个数,叫做互质数。例如5和7是互质数,8和9也是互质数。
公倍数几个数公用的倍数,叫做这几个数的公倍数。
最小公倍数在几个数的公倍数中最小的一个,叫做这几个数的最小公倍数。例如12,24,36......都是4和6的公倍数,12是4和6的最小公倍数。
单价数量总价每件商品的价钱,我们叫它单价,买了多少,叫做数量,一共用了多少钱,叫总价。总价=单价×数量
速度、时间、路程每小时(或每分钟或者每天)行进的路程,我们叫它速度,行进了几小时(或几分钟或几天)我们叫它时间,一共行进多少路,我们叫它路程。路程=速度×时间
加法交换律两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律。字母表示:a+b=b+a
加法结合律三个数相加,先把前两个数相加,再同第三个数相加;或先把后两个数相加,再同第一个数相加,它们的和不变。这叫做加法结合律。字母表示:(a+b)+c=a+(b+c)
乘法交换律两个数相乘,交换因数的位置,它们的积不变。这叫做乘法交换律。字母表示:a×b = b×a
乘法结合律三个数相乘,先把前两者相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫做乘法结合律。字母表示:(a×b)×c=a×(b×c)
乘法分配律两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做乘法分配率。字母表示:(a+b)×c=a×c+b×c
三、四位数的加法法则(1)相同数位对齐;(2)从个位加起;(3)哪一位上的数相加满十,要向前一位进一。
乘数是一位数的乘法法则(1)从个位起,用乘数依次乘被乘数的每一位数;(2)哪一位上乘得的积满几十,就向前一位进几。0和任何数相乘都得0。
两个因数和积的变化规律一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)若干倍。
除法中商不变的性质在除法里,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
乘法各部分间的关系因数×因数=积 一个因数=积÷另一个因数
除法各部分间的关系被除数÷除数=商 除数=被除数÷商 被除数=商×除数
乘法的验算方法用所得的积除以一个因数,如果得到另一个因数,就是乘法做对了。
除法的'验算方法用除数和商相乘,如果得到被除数,或者用被除数除以商,如果得到除数,就是除法做对了。
乘法的简便算法三个数相乘,可以先把后面两个数相乘,再和第一个数相乘,结果不变。利用这个规律,有时一个数连续乘以两个一位数,改成乘以两个一位数的积,比较简便;有时一个数乘以两位数,改成连续乘以两个一位数,计算比较简便。
例如:
6×12×5=6×(12×5)
25×16=25×(4×4)=25×4×4
除法的简便算法一个数连续用两个数除,每次都能除尽的时候,可以先把两个除数相乘,用它们的积去除这个数,结果不变。利用这个规律,有时一个数连续除以2个一位数,改成除以这2个一位数的积,比较简便;有时一个数除以两位数,改成连续除以2个一位数,比较简便。
例如:
1000÷25÷4=1000÷(25×4)
420÷35=420÷7÷5
解答应用题的步骤(1)弄清题意,并找出已知条件和所求问题;(2)分析题里数量间的关系,确定先算什么,再算什么,最后算什么(3)确定每一步该怎样算,列出算式,算出得数;(4)进行检验,写出答案。
检验应用题(1)按照原来的题意,依次检查每一步列式和计算,看是否正确(2)把得数当作已知条件,按照题意倒看一步一步地计算,看结果是不是符合原来的一个已知条件。
多位数的写法(1)从高位起,一级一级地往下写;(2)哪个数位上一个数也没有,就在哪个数位上写0。
例如:七千零三亿零二十万写作700300200000
加法各部分间的关系和=加数+加数 加数=和-另一个加数
减法各部分间的关系差=被减数-减数 减数=被减数-差 被减数=减数+差
加减法的简便运算一个数连续减去两个数,等于这个数减去两个数的和。
例如130-46-34=130-80=50
有余数除法各部分间的关系被除数=商×除数+余数
同级运算的顺序一个算式里,如果只含有同一级运算,要从左往右依次计算。
不同级运算的运算顺序一个算式里,如果含有两级运算,要先做第二级运算,后做第一级运算。
例如100-7×5=100-35=65
关于小学六年级数学知识点的总结
1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。
3.分数乘法意义
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归
5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数
找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数
找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的`分母做分子。则是1/12,12是1/12的倒数。
8.小数的倒数:
普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1
9.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:
比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个.
15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。
小学数学知识概念公式总结
小学一年级九九乘法口诀表。学会基础加减乘。
小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级比例百分比概率,圆扇圆柱及圆锥。
必背定义、定理公式:
三角形的面积=底×高÷2。公式s=a×h÷2
正方形的面积=边长×边长公式s=a×a
长方形的面积=长×宽公式s=a×b
平行四边形的面积=底×高公式s=a×h
梯形的面积=(上底+下底)×高÷2公式s=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:v=abh
长方体(或正方体)的体积=底面积×高公式:v=abh
正方体的体积=棱长×棱长×棱长公式:v=aaa
圆的周长=直径×π公式:l=πd=2πr
圆的面积=半径×半径×π公式:s=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:s=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:s=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:v=sh
圆锥的体积=1/3底面×积高。公式:v=1/3sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式
一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。o除以任何不是o的数都得o。
简便乘法:被乘数、乘数末尾有o的乘法,可以先把o前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的`等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位'1'平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
二、数量关系计算公式方面
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和一个加数=和+另一个加数
被减数-减数=差减数=被减数-差被减数=减数+差
因数×因数=积一个因数=积÷另一个因数
被除数÷除数=商除数=被除数÷商被除数=商×除数
有余数的除法:被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克1千克=1000克=1公斤=1市斤
1公顷=10000平方米。1亩=666.666平方米。
1升=1立方分米=1000毫升1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数:公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分)
第一单元 数据收集整理
1、用画'正'字的方法收集数据。
2、用统计图表来表示数据的情况。
3、根据统计图表可以做出一些判断。
4、数据收集---整理---分析表格。
第二单元 表内除法
一、平均分
1、平均分的含义:把一些物品分成几份,每份分得同样多,叫平均分。
2、平均分的方法:
(1)把一些物品按指定的份数进行平均分时,可以一个一个的分,也可以几个几个几个的分,直到分完为止。
(2)把一些物品按每几个一份平均分,分时可以想:这个数可以分成几个这样的一份。
二、除法
1、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。
2、除法算式的读法:通常按照从前往后顺序读,'÷'读作除以,'='读作等于,
其他读法不变。
3、除法算式各部分的名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。
三、用 2~6 的乘法口诀求商
1、求商的方法:
(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口诀求商。
2、用乘法口诀求商时,想除数和几相乘的被除数。
四、解决问题
1、解决有关平均分问题的方法:
总数÷每份数=份数、总数÷份数=每份数、被除数=商×除数、
被除数=商×除数+余数、除数=被除数÷商、因数×因数=积、
一个因数=积÷另一个因数
2、用乘法和除法两步计算解决实际问题的方法:
(1)所求问题要求求出总数,用乘法计算;
(2)所求问题要求求出份数或每份数,用除法计算。
第三单元 图形的运动
1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
2、平移:当物体水平方向或竖直方向运动,并且物体的方向不
第四单元 表内除法
一、用 7、8、9 的乘法口诀求商
求商方法:想'除数×( )=被除数',再根据乘法口诀计算得商。
二、解决问题
求一个数里有几个几,和把一个数平均分成几份,求每份是多少,都用除法计算。
第五单元 混合计算
一、混合计算
混合运算,先乘除,后加减,有括号的要先算括号里面的。只有加、减法或只有乘、除法,都要从左到右按顺序计算。
二、解决两步计算的实际问题
1、想好先解决什么问题,再解决什么问题。
2、可以画图帮助分析。
3、可以分布计算,也可以列综合算式。
第六单元 有余数的除法
一、有余数的除法
1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。
2、余数与除数的关系:在有余数的除法中,余数必须比除数小。的余数小于除数 ,最小的余数是 1。
3、笔算除法的计算方法:
(1)先写除号'厂'
(2)被除数写在除号里,除数写在除号的左侧。
(3)试商,商写在被除数上面,并要对着被除数的个位。
(4)把商与除数的乘积写在被除数的下面,相同数位要对齐。
(5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。
4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
(1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。
(2)乘:把除数和商相乘,将得数写在被除数下面。
(3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。
(4)比:将余数与除数比一比,余数必须必除数小。
二、解决问题
根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。
第七单元 万以内数的认识
一、1000 以内数的认识
1、10 个一百就是一千。
2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几,中间有几个零,都读一个'零',末尾不管有几个 0,都不读。
3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写 0 占位。
4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。
二、10000 以内数的认识
1、10 个一千是一万。
2、万以内数的读法和写法与 1000 以内的数读法和写法相同。
3、最小两位数是 10,的两位数是 99; 最小三位数是 100,的三位数是 999;最小四位数是 1000,的四位数是 9999;最小的五位数是 10000,的五位数是99999。
三、整百、整千数加减法
1、整百、整千加减法的计算方法。
(1)把整百、整千数看成几个百,几个千,然后相加减。
(2)先把 0 前面的数相加减,再在得数末尾添上与整百、整千数相同个数的 0。
2、估算
把数看做它的近似数再计算。
第 八单元 克和千克
克和千克是国际上通用的质量单位。计量较轻的物品的质量时,通常用'克',用字母g表示;计量较重的物品质量时,通常用'千克'作单位,用字母kg表示。
1 千克=1000 克、(了解 1 千克=1 公斤、1 公斤=2 斤、1 斤=500 克、
1 斤=10 两、1 两=50 克)
估计物品有多重,要结合物品的大小、质地等因素。
最新版小学三年级下册数学知识点总结
1.位置:所在或所占的地方。
2.方向:指东,西,南,北等方位。
3.除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
若ab=c(b0),用积数c和因数b来求另一个因数a的运算就是除法,写作c/b,读作c除以b(或b除c)。
其中,c叫做被除数,b叫做除数,运算的结果a叫做商。
4.除法法则:除数是几位,先看被除数的.前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。
余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
5.商不变性质:被除数和除数同时乘或除以一个非零自然数,商不变。
6.除法的性质:一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300254=300(254)。
7.被除数、除数、商的关系:被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍;除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。
8.笔算除法:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0,再继续除。
9.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补0),然后按照除数是整数的除法法则进行计算。
10.没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。
11.第一级运算:加法和减法叫做第一级运算。
12.第二级运算:乘法和除法叫做第二级运算。
13.数据:数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。
14.数据分析:数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。
小学二年级数学知识点总结之数与代数
为了能帮助广大小学生朋友们提高数学成绩和数学思维能力,小编为各位同学总结归纳了小学二年级数学知识点,希望能对各位同学有所帮助。更多学习材料尽在。
小学二年级数学知识点总结:数与代数
认识计数单位“百”和“千”,知道相邻两个计数单位之间的十进关系。
掌握万以内的数位顺序,会读、写万以内的数。
知道万以内数的组成。
会比较万以内数的大小,能用符号和词语描述万以内数的大小。
理解并认识万以内的.近似数。
会口算百以内的两位数加、减两位数。
会口算整百、整千数加、减法。
会计算几百几十加、减几百几十,能结合实际进行估算。
知道除法的含义和除法各部分名称以及乘法与除法的关系。
熟练进行用乘法口诀求商。
会从生活中发现和提出数学问题,能用所学知识(两步计算)加以解决。
知道小括号的作用,会使用小括号。
会探索给定图形或数的排列中的简单规律。
有发现和欣赏数学美、运用数学去创造美的意识。
初步形成观察、分析和推理能力。
认识质量单位克和千克。
初步建立1克和1千克的质量观念,知道1千克=1000克。
建立质量观念,培养学生估算物体质量的意识。
今天就和大家就分享到这,祝各位同学学习愉快!
除法知识点
**知识点**
1、能正确掌握除法竖式的书写格式,掌握除法竖式的写法和每一步所表示的含义。
2、进一步体会除法的意义。
有余数的除法
1、体会有余数除法的意义。
2、积累正确的试商方法。
4、能用竖式正确计算有余数除法,了解余数一定要比除数小。
5、能运用有余数除法的知识解决一些简单的实际问题。
分苹果(竖式除法)
知识点:
1、掌握表内除法竖式的书写格式。
2、掌握除法竖式的写法和每一步所表示的含义。
分橘子(有余数的除法(一))
知识点:
1、体会有余数除法的意义。
2、会用竖式表示有余数的除法,了解余数一定要比除数小。
分草莓(有余数的除法(二))
知识点:
1、掌握正确的试商方法。利用乘法口诀,两数相乘的积最接近被除数,而又比被除数小。
2、能运用有余数除法的知识解决一些简单的实际问题。
租船(有余数除法的应用(一))
知识点:
灵活运用有余数的除法的有关知识解决生活中的简单实际问题。
派车(有余数除法的应用(二))
知识点:
灵活运用有余数除法及相关知识解决生活中的简单实际问题。
**练习题**
49÷7=102÷17=64÷16=72÷12=
221÷13=108÷9=240÷15=72÷18=
8÷4=21÷7=196÷14=6÷3=
**参考答案**
49÷7=(7)102÷17=(6)64÷16=(4)72÷12=(6)
221÷13=(17)108÷9=(12)240÷15=(16)72÷18=(4)
8÷4=(2)21÷7=(3)196÷14=(14)6÷3=(2)
最新西师版小学三年级数学知识点总结
西师版小学三年级数学知识点总结
数学这门课程永远的伴随着我们,那么如何才能学习并掌握好这门课程呢?小编为大家整理了西师版小学三年级数学知识点总结,希望对考生学习数学这门课程有所帮助!
一、年月日:
一三五七八十腊(12月),
三十一天永不差;
四六九冬(11月)三十日;
平年二月二十八,
闰年二月把一加。
二、100以内的质数口诀:
2、3、5、7和11,
13后面是17,
19、23、29,(十九、二三、二十九)
31、37、41,(三一、三七、四十一)
43、47、53,(四三、四七、五十三)
59、61、67,(五九、六一、六十七)
71、73、79,(七一、七三、七十九)
83、89、97.(八三、八九、九十七)
三、多位数读法歌:
读数要从高位起,哪位是几就读几,
每级末尾若有零,不必读出记心里,
其他数位连续零,只读一个就可以,
万级末尾加读万,亿级末尾加读亿。
四、多位数写法歌:
写数要从高位起,哪位是几就写几,
哪一位上没单位,用0占位要牢记。
五、多位数大小比较歌:
位数不同比大小,位数多的大,位数少的小,
位数相同比大小,高位比起就知道。
六、运算顺序歌:
打竹板,响连天,各位同学听我言,
今天不把别的表,单把四则运算聊一聊,
混合试题要计算,明确顺序是关键。
同级运算最好办,从左到右依次算,
两级运算都出现,先算乘除后加减。
遇到括号怎么办,小括号里算在先,
中括号里后边算,次序千万不能乱,
每算一步都检查,又对又快喜心间。
七、除的意义:
看到除,
圈一圈,
除字前面是除数,
除字后面被除数,
位置交换别忘了。
八、商中间或末尾有0的除法:
我是0,本事大,
除法运算显神通。
不够商1我来补,
有了空位我就坐。
别人要想把我除,
常胜将军总是我。
九、认识钟表:
跑的最快是秒针,个儿高高,身材好;
跑的最慢是时针,个儿短短,身材胖;
不高不矮是分针,匀速跑步作用大。
十、量角:
中心对顶点,
0线对一边,
一边读刻度,
内外要分辨。
十一、计量单位间的`换算:
大化小,用乘好。
小化大,除不差。
十二、大月、小月的记忆:
七前单月大,
八后双月大。
十三、我是1厘米:
1厘米,很淘气,仔细找,才见你。
指甲盖1厘米,伸出手指比一比。
长短和我差不多,大约就是一厘米。
100个我是1米,我是米的小兄弟,
物体长了别用我,要不一定累死你。
以上就是小编为您提供的西师版小学三年级数学知识点总结,希望您阅读愉快!
小学五年级上册数学知识点总结
公式:长方形:周长=(长+宽)×2——长=周长÷2-宽;宽=周长÷2-长字母公式:c=(a+b)×2
面积=长×宽字母公式:s=ab
正方形:周长=边长×4字母公式:c=4a
面积=边长×边长字母公式:s=a
平行四边形的面积=底×高字母公式:s=ah
三角形的面积=底×高÷2——底=面积×2÷高;高=面积×2÷底字母公式:s=ah÷2
梯形的面积=(上底+下底)×高÷2字母公式:s=(a+b)h÷2
——上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)
行四边形面积公式推导:剪拼、平移25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形;
长方形的长相当于平行四边形的底;平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;平行四边形的'高相当于三角形的高;
长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,
小学一年级下册数学知识点的总结
一、学习目标:
1.体验上下的位置关系;定物体上下的位置和顺序,并能用自己的语言表达;
2.比较熟练地口算20以内的退位减法;初步学会用加法和减法解决简单的问题;
3.使学生知道长方形、正方形的形状和边的特点;
4.通过折一折、摆一摆、剪一剪、拼一拼,加深对长方形和正方形的认识,能辨别、区分这两种图形;
5.认识计数单位“一”和“十”,能够熟练地一个一个地和一十一十地数出数量在100以内的物体个数,懂得100以内的数是由几个“十”和几个“一”组成的,掌握100以内数的顺序,会比较100以内数的大小;
6.能够熟练地口算整十数加一位数和相应的减法。
二、学习难点:
1.能确定物体上下的位置和顺序,并能用自己的语文试表述;
2.让学生体验上下位置的相对性;
3.通过操作让学生明白长方形和正方形各自的特点;
4.理解算理,掌握自己喜欢的'计算方法,并能够正确熟练地进行计算;
5.100以内数的读法和写法;
6.数100以内数,特别是数到几十九、下一个整十数应该数几十比较困难;
7.了解和掌握个位、十位的数位的概念。理解个位、十位上的数所表示的意义,能够正确地、熟练地读、写100以内的数。
三、知识点概括总结:
1.位置:所在或所占的地方,有上下、前后、左右之分。
45位用户关注
94位用户关注
29位用户关注
53位用户关注
84位用户关注
62位用户关注
37位用户关注
48位用户关注
16位用户关注
33位用户关注